Indian Statistical Institute
 Mid-Semestral Examination
 Differential Geometry I-MMath I

Time: 2 hours
Max. Marks : 40

Answer all questions. All claims must be accompanied by complete and correct justification(s).
(1) State whether the following statements are True or False. Justify.
(a) Every vector field on \mathbb{R} is complete.
(b) There exists a 2 -surface S in \mathbb{R}^{3} whose spherical image consists of exactly 4 points.
(c) If α is a constant speed parametrized curve in a surface S, then α is a geodesic.
(d) $\mathbb{R}^{2}-0$ is geodesically complete.

$$
[4 \times 4=16]
$$

(2) Show that a parametrized curve α in the unit n-sphere S^{n} is a geodesic if and only if it is of the form

$$
\begin{equation*}
\alpha(t)=(\cos a t) e_{1}+(\sin a t) e_{2} \tag{8}
\end{equation*}
$$

for some pair of orthonormal vectors $e_{1}, e_{2} \in \mathbb{R}^{n+1}$ and $a \in \mathbb{R}$.
(3) Discuss the definition of the Weingarten map. Let \mathbb{X}, \mathbb{Y} be two smooth tangent vector fields on a n-surface S in \mathbb{R}^{n+1} oriented by \mathbb{N}. Show that

$$
\left(\nabla_{\mathbb{X}(p)} \mathbb{Y}\right) \cdot \mathbb{N}(p)=\left(\nabla_{\mathbb{Y}(p)} \mathbb{X}\right) \cdot \mathbb{N}(p)
$$

for all $p \in S$. Further show that the vector field $[\mathbb{X}, \mathbb{Y}]$ defined by

$$
[\mathbb{X}, \mathbb{Y}](p)=\left(\nabla_{\mathbb{X}(p)} \mathbb{Y}\right)-\left(\nabla_{\mathbb{X}(p)} \mathbb{Y}\right)
$$

is a tangent vector field on S.
$[2+6+3]$
(4) State and prove the Frenet formulas for a plane curve.

